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Generation and development of disturbances in a hypersonic viscous shock layer on a
flat plate is studied both experimentally and numerically. The study is performed at the
Mach number M∞ = 21 and the Reynolds number ReL = 1.44 × 105 and is aimed at
elucidating the physical mechanisms that govern the receptivity and instability of the
shock layer at extremely high hypersonic velocities. The experiments are conducted in
a hypersonic nitrogen-driven wind tunnel. An electron-beam fluorescence technique, a
Pitot probe and a piezoceramic transducer are used to measure the mean density and
Mach number contours, as well as density and pressure fluctuations, their spectra and
spatial distributions in the shock layer. Direct numerical simulations are performed
by solving the Navier–Stokes equations with a high-order shock-capturing scheme
in a computational domain including the leading and trailing edges of the plate,
so that the bow shock wave and the wake behind the plate are also simulated. It
is demonstrated that computational and experimental data characterizing the mean
flow field, intensity of density fluctuations and their spatial distributions in the shock
layer are in close agreement. It is found that excitation of the shock layer by external
acoustic waves leads to generation of entropy–vortex disturbances with two maxima
of density fluctuations: directly behind the shock wave and on the external edge
of the boundary layer. At the same time, the pressure fluctuations decay inward
into the shock layer, away from the shock, which agrees with the linear theory
of interaction of shock waves with small perturbations. Thus, the entropy–vortex
disturbances are shown to dominate in the hypersonic shock layer at very high Mach
numbers, in contrast with the boundary layers at moderate hypersonic velocities
where acoustic modes are most important. A parametric numerical study of wave
processes in the shock layer induced by external acoustic waves is performed with
variations of frequency, amplitude and angle of propagation of external disturbances.
The amplitude of generated disturbances is observed to grow and decay periodically
along the streamwise coordinate, and the characteristics of these variations depend on
the frequency and direction of incident acoustic waves. The hypersonic shock layer
excited by periodic blowing and suction near the leading edge is also investigated; in
the experiments, this type of excitation is obtained by using an oblique-cut whistle. It
is shown that blowing/suction generates disturbances resembling those generated by
external acoustic waves, with similar spatial distributions and phase velocities. This
result paves the way for active control of instability development in the shock layer by
means of destructive interference of two types of disturbances. Numerical simulations
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are performed to show that instability waves can be significantly amplified or almost
entirely suppressed, depending on the relative phase of blowing/suction and acoustic
disturbances. Wind-tunnel experiments completely confirm this numerical prediction.
Thus, the feasibility of delaying instability development in the hypersonic shock layer
has been demonstrated for the first time.

1. Introduction
The flow around the elements of a vehicle flying at a hypersonic velocity in the upper
atmosphere can occur in several flow regimes (figure 1). In the flow region near the
leading edges, the boundary layer and the shock wave interact and merge, so that it
is impossible to indicate a clear boundary between them. The merged layer gradually
transforms to the region of strong viscous–inviscid interaction. In the region of strong
interaction, the inviscid flow between the shock wave and the boundary layer either
is small or cannot be identified at all. Then there follows the regime of weak viscous–
inviscid interaction where the inviscid flow plays an important role. The regimes of
the merged layer and strong interaction can be united and considered together as the
regime of a viscous shock layer.

A viscous shock layer is always formed on the leading edges of hypersonic flying
vehicles, where the local Reynolds number is not yet too high and viscous forces
dominate in the flow behind the bow shock wave. The length of this layer depends on
flow conditions. For instance, for an aeroplane flying with a velocity corresponding
to a Mach number of 12 at an altitude of 60 km, the viscous shock layer extends
for 1 m from the leading edge. Perturbations formed in the shock layer propagate in
the downstream direction and affect the evolution of fluctuations and the laminar-
turbulent transition in the hypersonic boundary layer of the flying vehicle as a whole.
The latter influences the friction drag, aerodynamic characteristics and magnitude
and distribution of heat fluxes over the aeroplane surface.

The analysis of the laminar-turbulent transition in the boundary layer is usually
started from the problem of receptivity, i.e. excitation of waves by external
perturbations. For hypersonic flows, two cases of disturbance excitation in the viscous
shock layer can be identified: continuous (distributed) generation in an extended flow
region and localized generation under an action localized in space. Generation of
instability waves by acoustic perturbations of the external flow is an example of distri-
buted generation of fluctuations in the shock layer, whereas generation of instability
waves by means of periodic blowing/suction perturbations on the body surface near
the leading edge can be considered as an example of localized generation.

The characteristics of disturbances in a hypersonic shock layer are determined
by the following basic processes: action of external flow perturbations on the shock
layer, generation of fluctuations inside the shock layer (receptivity) and development of
fluctuations because of their downstream convection. These processes are interrelated;
they proceed simultaneously over the entire shock layer and can be considered as
a unified mechanism of distributed receptivity. Morkovin (1968) offered the clearest
formulation of the receptivity problem. Receptivity is an important initial stage of the
laminar-turbulent transition in the boundary layer. Affecting flow receptivity is one of
the possible methods of controlling the laminar-turbulent transition in high-velocity
flows, which were reviewed by Kimmel (2003). Profound theoretical investigations of
the receptivity of supersonic and moderately hypersonic boundary layers to external
disturbances were performed by Ma & Zhong (2003a, b, 2005), Fedorov & Tumin
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Figure 1. Hypersonic flow past a flat plate: I, merged layer; II, strong viscous–inviscid
interaction; III, weak viscous–inviscid interaction.

(2004) and Tumin (2006, 2007), and the receptivity to disturbances introduced from the
surface was studied by Egorov, Sudakov & Fedorov (2004) and Wang & Zhong (2005).
It seems of interest to extend the study to extremely high hypersonic velocities and
investigate the receptivity of a hypersonic shock layer to external flow oscillations and
to perturbations induced by surface sources and to develop methods for controlling
the intensity of fluctuations arising in the shock layer.

This problem has not been adequately studied yet. Scarce experimental
investigations of the wave processes in the hypersonic shock layer were started in
the 1960s and were virtually interrupted in the early 1970s. The main results of these
activities were summarized by Harwey & Bushnell (1969), Wallace (1969), Beckwith,
Harvey & Clark (1971), Fisher et al. (1971), Kemp & Owen (1972) and Smith &
Driscoll (1975). Sporadic data were obtained in those studies on the distributions of
integral characteristics of fluctuations of the mass flow, density and temperature in the
shock layer and in the hypersonic mixing layer for moderate unit Reynolds numbers
in the range of Mach numbers M∞ = 7–43. The measurements were usually performed
for natural disturbances of the flow in the shock layer on the nozzle surface or on the
test-section wall in hypersonic nitrogen- or helium-driven wind tunnels. These data
could be hardly interpreted from the viewpoint of receptivity and stability problems
because the field of fluctuations was affected by the entire history of the gas flow in
the boundary layer on the nozzle and test-section walls, and the measurements were
performed by methods developed for low-velocity high-density flows.

It was only after a method was developed for measuring all wave characteristics of
density fluctuations in a low-density hypersonic flow (Mironov & Maslov 2000a) that
a targeted research of wave processes in the hypersonic viscous shock layer became
possible. The characteristics of density fluctuations in the shock layer on a flat plate,
sharp cone and curved compression surface and in the wake flow were recently
measured by a non-intrusive method of electron-beam fluorescence of nitrogen in a
flow with a Mach number M∞ = 21 and unit Reynolds number Re1∞ = 6 × 105 m−1

(Maslov & Mironov 1999; Mironov & Maslov 2000a, b; Mironov & Aniskin 2004;
Maslov, Mironov & Aniskin 2005). This method allowed the mean density field, the
spectra and the phase velocity of density fluctuations in the shock layer to be measured
and the growth rate of disturbances to be estimated. The method of artificial wave
packets was applied to low-density hypersonic flows for the first time by Mironov &
Maslov (2000b).

The method of wave packets for modelling the action of both external and internal
perturbations on the shock layer allows one to obtain data on the wave characteristics
of disturbances in the shock layer and to compare them with available mathematical
models of the processes. It also implies development, fabrication and application
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of sources of periodic perturbations with a controlled amplitude and phase. Such
sources have been developed and are used in studying stability of subsonic and
supersonic boundary layers. Numerous references and descriptions of various devices
designed for generating periodic perturbations in a subsonic external flow and in the
boundary layer can be found in Boiko et al. (2002). A spark discharge in the chamber
is frequently used for supersonic flows (Kosinov, Maslov & Shevelkov 1990). This
method is widely known by the name ‘synthetic jets’. For low-density hypersonic flows,
the most suitable source of periodic perturbations was found to be an oblique-cut
gas-dynamic whistle (Maslov & Mironov 1996).

It is difficult to construct a holistic pattern of the wave processes in the shock layer
because the parametric studies in hypersonic wind tunnels are extremely complicated
and only a limited number of parameters can be measured. On the other hand,
understanding the mechanisms of the emergence and evolution of disturbances in the
shock layer and their hierarchy and relationships is necessary to choose an effective
method for controlling the disturbances.

To overcome these difficulties, it seems reasonable to use a comprehensive
numerical and experimental approach to study the hypersonic shock layer. Numerical
simulations offer the possibility of a large-scale parametric study of the flow and
obtaining data on all flow parameters, while experimental data are important for
validation of the mathematical model and numerical algorithm.

In computations, it is necessary to use adequate (with respect to flow conditions)
mathematical models and numerical simulation methods. The viscous shock layer
has some specific features distinguishing it from the boundary layer. In the case of a
hypersonic shock layer, the flow is not parallel; significant divergence of the flow and
a streamwise pressure gradient are observed; the bow shock wave is located rather
close to the boundary layer; and instability waves can be excited not only through
the receptivity mechanism but also because of direct amplification of perturbations
passing through the shock wave. The most famous and well-developed models of the
wave processes in supersonic boundary layers are the locally parallel linear theory of
stability (Mack 1975; Gaponov & Maslov 1980) and parabolized equations of stability
(Bertolotti & Herbert 1991; Chang et al. 1991). These models have demonstrated
appreciable advantages in studying flows with weak viscous–inviscid interaction.

In the hypersonic shock layer, however, the bow shock wave is so close to the body
surface that the transverse sizes of the shock and boundary layers are commensurable.
In this case, it is necessary to take into account the influence of the shock wave
and viscous–inviscid interaction on stability characteristics. The boundary conditions
for disturbances on the shock wave were derived from the linearized Rankine–
Hugoniot conditions (Chang, Malik & Hussaini 1990; Maslov et al. 2004a; Maslov,
Poplavskaya & Smorodsky 2004b). It was demonstrated that reflection of disturbances
from the shock wave results in branching of the solutions of the linear stability
problem; i.e. more than one solution was obtained for a comparatively narrow range
of frequencies. The best agreement between the disturbance growth rates computed
by the linear stability theory and measured in experiments was observed if the mean
flow was computed with the use of parabolized Navier–Stokes equations.

The use of direct numerical simulations (DNSs) on the basis of the full unsteady
Navier–Stokes equations is the most promising approach in this case. It allows
abandoning the simplifying assumptions of the boundary-layer model and obtaining
steady and unsteady flow fields directly. The DNS approach was successfully used
for simulating the disturbances in the hypersonic boundary layer (Zhong 2000, 2001;
Ma & Zhong 2004; Wang & Zhong 2005; Egorov, Sudakov & Fedorov 2006a,b, 2008;
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Tumin, Wang & Zhong 2007). As the experience gained in these studies has shown, ap-
plication of the linear stability theory facilitates interpretation of the research results.

In addition to understanding the processes of receptivity and evolution of
disturbances in hypersonic shock layers, the goal of these experimental and numerical
studies was to develop methods and devices for controlling the intensity of fluctuations.
This problem is an important step in controlling the laminar-turbulent transition.
The problem of disturbance control can be solved by various methods, which
were systematized and reviewed by Gad-el-Hak (1996). All methods of affecting
the evolution of disturbances can be classified into two large groups: passive and
active. In passive methods, the object to be controlled is the mean flow; changes
in the parameters of the mean flow interrupt the growth of disturbances in the
boundary layer and lead to their suppression. These methods are usually energy
consuming because it is necessary to change the parameters of large masses of the
gas flowing in the boundary layer. In active methods, the action is applied to the
disturbances directly, which alters the disturbance amplitude. The energy consumption
in these methods is lower because the energy of fluctuations at the beginning of their
development is only a small fraction of the energy of the mean flow in the boundary
layer. An important issue is the correct choice of methods, which is determined by
flow velocity. Active methods are successfully used in subsonic flows: blowing/suction,
microelectromechanical systems (MEMS), local periodic heating and electric discharge
(Biringen 1984; Nosenchuck 1988; Gaster 2000; Moreau 2007). Some of these methods
of active control (periodic blowing/suction, electric discharge and synthetics jets) were
also used for supersonic and hypersonic boundary layers; in addition, specific methods
of active flow control were developed (see Kimmel 2003). In particular, the method of
absorbing acoustic perturbations by a sound-absorbing coating was successfully used
for hypersonic flows (Fedorov et al. 2001, 2003); this method can also be considered
as an active control method. An analysis of the literature (Biringen 1984; Nosenchuck
1988; Gad-el-Hak 1996; Gaster 2000; Fedorov et al. 2001, 2003; Moreau 2007) shows
that the choice of the method of active control of disturbances in the boundary layer
is determined by mean flow parameters and by the type of the disturbance mode. An
optimal method for controlling the hypersonic shock layer should also be determined.
For example, based on the results of studying the receptivity of the shock layer to
external acoustic waves (Kudryavtsev et al. 2006; Maslov et al. 2007), an interference
method of controlling disturbances in the shock later was successfully used (Fomin
et al. 2007; Maslov et al. 2008).

The present paper reports the results of a numerical and experimental study of
the distributed and localized receptivity of a hypersonic viscous shock layer on a
flat plate at a zero angle of attack, flow Mach number M∞ = 21, unit Reynolds
number Re1∞ = 6 × 105 m−1 and temperature factor of the surface varied from 0.08
to 0.5. The majority of experimental results were obtained by the method of wave
packets. The numerical study was performed by the method of DNSs of disturbances,
based on two-dimensional unsteady Navier–Stokes equations. With the data obtained,
controlling the intensity of disturbances in a hypersonic shock layer on a flat plate
was modelled numerically and experimentally.

2. Experimental equipment and diagnostic methods
2.1. Hypersonic wind tunnel

The experiments were performed in a T-327A hypersonic nitrogen-driven wind tunnel
based at the Khristianovich Institute of Theoretical and Applied Mechanics (Siberian
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Branch, Russian Academy of Sciences). This is a free-jet wind tunnel with a running
time of 40 s. The exit diameter of the wind-tunnel nozzle is 220 mm; the flow Mach
number at the exit of a conical nozzle is 20; and the diameter of a uniform flow
core is 0.1 m. Owing to jet expansion in the wind-tunnel test section, the flow Mach
number increases by three units per metre, so that it reaches M∞ ∼=21 in the region
of measurements. The experiments were performed with a fixed unit Reynolds
number Re1∞ = 6 × 105 m−1 and stagnation temperature T0 = 1200 K. Under these
conditions, the uniform flow core diameter was 0.1 m. At this stagnation temperature,
a significant part of nitrogen molecules in the settling chamber are vibrationally
excited. Relaxation of vibrational excitation, which occurs during flow expansion and
cooling, is terminated when the flow Mach number approaches ∼=15 because of an
insufficient number of intermolecular collisions. As a result, the level of vibrational
excitation of molecules in the wind-tunnel test section corresponds to a temperature
of ∼= 26 K. The gas in the shock layer on the plate is heated to the maximum
temperature of ∼=400 K (see the data in § 4); however, the total number of
intermolecular collisions during the gas motion through the shock layer is not
sufficient to put the vibrational temperature in equilibrium with the translational
and rotational degrees of freedom. Therefore, the vibrational temperature of nitrogen
molecules remains substantially lower than the kinetic temperature of the gas in the
shock layer, which allows one to neglect its influence on wave processes.

2.2. Flat-plate model

The flat plate was made of low-carbon steel. Its planform was a trapezoid with a
length of 240 mm, width at the leading edge of 100 mm and width at the trailing
edge of 80 mm. The plate thickness was 8 mm; the sharp leading edge of the plate
was shaped as a 7◦ wedge with a bluntness radius of ∼=0.05 mm. The side edges of
the plate were also wedges with an angle of 20◦. The surface temperature was equal
to 300 K and was monitored by a copper–constantan thermocouple. The flat plate
was mounted at a zero angle of attack to the flow direction. In the paper, we use a
Cartesian coordinate system whose origin coincides with the plate leading edge; the
x axis is aligned with the streamwise axis of the plate; the y axis is normal to the
plate surface; and the z axis is aligned in the spanwise direction.

Along the streamwise axis of the plate, at a distance of 70 mm from the leading
edge, there was a flush-mounted graphite insert 170 mm long, 15 mm wide and 5 mm
thick (see figure 2). Graphite and steel have approximately identical values of thermal
diffusivity, which minimized the distortion of the temperature field on the plate surface.
The insert was used to absorb the probing beam in the experiment arrangement with
the electron beam incident normal on to the plate surface.

2.3. Diagnostic methods

The parameters measured in wind-tunnel experiments were the mean density and
density fluctuations, steady-state pressure and pressure fluctuations behind the normal
shock wave. The steady-state pressure behind the normal shock was measured by a
Pitot tube, and the pressure fluctuations were measured by a piezoceramic transducer
of pressure fluctuations. In processing the Pitot measurements, a correction was made
for flow rarefaction, in accordance with Beckwith et al. (1971) and Roger, Wainright &
Touryan (1966).

The mean density and density fluctuations were measured by the method of electron-
beam fluorescence. This method adapted to measurements of the characteristics
of density fluctuations (spectrum and phase of fluctuations, phase velocity of
disturbances) was described in detail by Mironov & Maslov (2000a). The method was
used in the experiment arrangement with the electron beam directed parallel to the
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Figure 2. Electron-beam measurements: 1, electron gun; 2, electron beam; 3, flat plate;
4, graphite insert; 5, lens; 6, light filter; 7, light splitter; 8, photoamplifiers with aperture
diaphragms.

model surface (Maslov & Mironov 1999; Mironov & Maslov 2000a,b; Mironov &
Aniskin 2004; Maslov et al. 2005). In the present experiments, the method was slightly
modified. The probing electron beam was incident normal on to the graphite insert
in the plate surface, which absorbed the beam and minimized the flux of secondary
electrons. The measurements in quiescent nitrogen showed that the intensity of gas
fluorescence induced by secondary electrons even in the near vicinity of the surface was
within 10 % of the fluorescence caused by the primary electron beam. A normally
incident electron beam passed high-density regions on the minimum length and
became weakly scattered, which made the measurements more local and allowed the
scattering of the probing beam electrons to be considered as a second-order effect.
For this reason, it was possible to take into account only the process of collisional
deactivation of electron-excited molecules, substantially simplify the calculations of
the mean density and density fluctuations and improve the measurement accuracy.
The procedure of determining the mean density and density fluctuations here was
similar to measurements in the wake flow described by Aniskin & Mironov (2000);
the remaining features of the measurement procedure were consistent with the basic
technique (Mironov & Maslov 2000a). The flow was probed with an electron beam; the
electron energy was 14 keV with a current strength in the beam equal to 0.5 mA;
the beam diameter in vacuum was 1mm. The density fluctuations were measured in
the frequency range of 1–50 kHz.

2.4. Methods of generating controlled periodic perturbations

2.4.1. Introduction of periodic perturbations into the shock layer from the plate surface

Perturbations were introduced into the shock layer on the flat plate by a cylindrical
oblique-cut gas-dynamic whistle (Maslov & Mironov 1996). This whistle is a copper
cylinder closed on one side and is cut at an angle of 40◦ to the centreline. The cylinder
contains a piston with a transducer of pressure fluctuations, which can be moved to
change the oscillation frequency. The whistle was mounted under the plate close to
its leading edge, as is shown in figure 3.

In such a configuration, pressure oscillations arise in the whistle resonator. They
introduce a pressure pulse into the shock layer in the phase of gas exhaustion from
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Figure 3. Arrangement of the whistle on the flat plate: 1, plate; 2, whistle; 3, transducer of
pressure fluctuations; 4, heat-removing plate; 5, transducer cable; 6, heat insulation; 7, sting
of the plate.
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Figure 4. Spanwise spectrum of density fluctuations induced in the shock layer on a flat
plate by an oblique whistle (x = 75 mm; y =13 mm).

the resonator, while the bulk of the gas escaping from the resonator flows under the
plate. The oblique-cut whistle had been already used for introducing perturbations
into the shock layer (Mironov & Maslov 2000b; Mironov & Aniskin 2004), but the
mean flow on the flat plate in the present experimental configuration was much
less distorted than the flow in those publications, and the procedure of variation of
the amplitude of perturbations introduced into the flow was substantially simplified.
The flow field distortion in this arrangement was less than 10 % in terms of density
and less than 2.5 % in terms of velocity. The signal of the transducer of pressure
fluctuations was used to identify artificial perturbations on the background of natural
noise of the flow and to determine the phase of fluctuations. The transverse size of
the steady perturbed region of the mean flow was 10 mm on the plate leading edge
and increased linearly in the downstream direction with an expansion angle of ∼= 5◦.
The region of periodic density fluctuations had a similar configuration.

The amplitude and phase of density fluctuations generated in the shock layer with
the whistle were measured along the z coordinate at those positions at which the
maximum amplitude of fluctuations in the y direction was reached. The measurements
were repeated in several x cross-sections. Expansion of density fluctuations into a
spectrum with respect to spanwise wavenumbers β (β-spectrum) shows that the
spectrum has only one finite-width peak at a zero wavenumber (figure 4). As the
measurements along the z axis were performed within the limits of the maximum
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Figure 5. Streamwise phase velocity of disturbances in the flow versus the frequency: squares,
disturbances generated by a spark discharge; circles, natural disturbances of the flow; inverted
triangles, disturbances generated by the whistle (Aniskin & Mironov 2000).

plate width (z = ±50 mm), the spectral resolution was restricted by the value of
0.0314 rad mm−1. The phase of density fluctuations is constant within this peak. It
means that the waves propagating in the shock layer are two-dimensional. Noticeable
expansion of the peak base is caused by the fact that periodic perturbations
introduced into the shock layer propagate in a band ∼=10 mm wide, and expansion
with respect to harmonic functions gives rise to additional spectral components
with high wavenumbers. Direct measurements of density fluctuations on the plate
in the plane (x, z) show that the perturbations introduced by the whistle are really
two-dimensional waves propagating in a finite-width channel.

The oblique-cut whistle was definitely demonstrated to generate acoustic
perturbations of the slow mode in a hypersonic flow (M∞ = 5) (Tsyryulnikov &
Mironov 2005). The perturbations generated in the hypersonic flow (M∞ =21) by the
whistle (Maslov, Mironov & Aniskin 2005) (inverted triangles in figure 5) may
probably be acoustic perturbations of the slow mode, though the experimental
measurements are too scarce for a definitive conclusion. The measured phase velocities
Cx are below Cx = 1 and close to the value Cx = 1 − 1/Me, where Me is the flow Mach
number behind the bow shock wave generated by the oblique-cut whistle.

2.4.2. Introduction of periodic perturbations into the external flow

Periodic acoustic perturbations were generated in the hypersonic flow by a powerful
periodic spark discharge in the settling chamber of the wind tunnel. The spark
discharge was triggered by an electric pulse, which served as a reference signal for
identifying the periodic disturbances on the background of natural noise of the wind-
tunnel flow. It was shown by Tsyryulnikov & Mironov (2005) that pressure oscillations
in the settling chamber generated fast-mode acoustic waves in the hypersonic (M∞ = 5)
flow. The wave characteristics of disturbances induced in the hypersonic flow of the
T-327A wind tunnel by an electric spark in the settling chamber were measured in
the present work. In particular, a piezoceramic transducer measured the streamwise
distributions of the amplitude and phase of acoustic fluctuations of pressure at a
length of 0.15 m and their cross-streamwise distributions within the uniform core flow
in the wind-tunnel test section. As an example, figure 6 shows the β-spectrum of flow
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Figure 6. Spanwise spectrum of pressure fluctuations generated in the free stream by a
spark discharge at a frequency of 13 kHz (x = 0, y =0).

disturbances measured along the plate leading edge. The resolution of the β-spectrum
is 0.0314 rad mm−1. The spectrum has a narrow peak at a zero wavenumber, which
evidences propagation of two-dimensional waves along the flow. The spectral regions
outside the peak are most probably noise components of the spectrum. The measured
streamwise distributions of the phase of pressure fluctuations Cx (squares in figure 5)
are scattered significantly. For this reason, we cannot definitely conclude that the flow
disturbances are fast-mode acoustic waves, as it was clearly shown for M∞ = 5 by
Tsyryulnikov & Mironov (2005).

2.4.3. Natural disturbances of the wind-tunnel flow

Natural disturbances compose the inherent noise of the wind-tunnel flow. The
characteristics of natural disturbances of the hypersonic flow in the T-327A wind
tunnel were measured in the present work. As these flow disturbances are randomly
distributed in time, the reference signal for phase measurements was the variable
component of the signal of the electron-beam fluorescence of the flow in the wind-
tunnel test section, which was related to density fluctuations in the flow. In this
case, the electron beam was non-scanning and passed through the flow axis. A
movable piezoceramic transducer of pressure fluctuations located at a certain distance
downstream from the electron beam measured the distributions of the amplitude and
phase of pressure fluctuations in the streamwise direction over a length of 0.15 m
and across the flow within the uniform core flow. High spatial coherence of natural
disturbances was found. A possible reason is the effect of a small space angle at
which the region of the emergence of disturbances is observed from the measurement
region (Born & Wolf 1968). Most probably, the disturbances in the flow are formed
in a small-size region near the nozzle throat, where flow instability in the boundary
layer on the nozzle wall arises.

Spatial coherence of natural disturbances in the wind-tunnel flow made it possible to
obtain the spectra of pressure fluctuations as functions of the transverse wavenumber
and to measure the distributions of the fluctuation phase over the streamwise
coordinate. As an example, figure 7 shows the spanwise spectrum measured along the
leading edge of the plate, which has a narrow peak at a zero wavenumber, evidencing
propagation of two-dimensional waves in the streamwise direction. It is most likely
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Figure 7. Spanwise spectrum of natural pressure fluctuations in the free stream for a
frequency of f = 13 kHz (x = 0, y = 0).

that the spectrum portions outside the peak are noise. The β-spectrum resolution is
0.0314 rad mm−1.

The measurements of the relative phase as a function of the streamwise coordinate
showed that natural disturbances in the flow propagated with a phase velocity close to
that of slow acoustic waves Cx = 1−1/M∞ (circles in figure 5). This result agrees with
the data obtained previously for acoustic disturbances in supersonic wind tunnels
(Laufer 1964; Tsyryulnikov & Mironov 2005). It was shown in Laufer (1964) that
acoustic disturbances were generated by Mach waves. These waves arise owing to
interaction of the supersonic flow with hydrodynamic disturbances of the boundary
layer on the wind-tunnel walls, which are entrained in the downstream direction with
a velocity lower than that of the main supersonic flow. Mach waves are generated
in the flow if the difference in velocities is greater than the velocity of sound.
Correspondingly, acoustic disturbances generated by these waves in the wind tunnel
move downstream with a velocity u − c, where u is the flow velocity and c is the local
velocity of sound.

The spectrum of natural fluctuations of density in the free stream was measured
by the method of electron-beam fluorescence. It is an exponentially decreasing
dependence on frequency (figure 8). The major fraction of the fluctuations lies
in the frequency range f =0–13 kHz. The level of the normalized integral density
fluctuations ρ ′/ρ∞ in the uniform core flow in this range is ∼= 1.4 %.

To conclude this section, a few words concerning the angles of propagation of
disturbances in the flat-plate shock layer should be said. Data on the angles of
propagation of natural density disturbances in the shock layer obtained by direct
measurements of the streamwise and normal phase velocities were presented by
Mironov & Maslov (2000a) and Maslov et al. (2005). It was shown that the angle of
propagation is smaller than 5◦ with respect to the flow direction on the boundary-
layer edge for frequencies f > 7 kHz; therefore, these disturbances can be considered
as two-dimensional.

3. Governing equations and numerical method
It is well known (Gaponov & Maslov 1980) that the most unstable disturbances in
boundary layers at high Mach numbers are those propagating at a zero angle to the
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Figure 8. Free-stream spectrum of density fluctuations averaged over the uniform core flow.

basic flow direction. This means that the flow remains two-dimensional at the early
stages of the transition to turbulence. The above-described experiments performed at
the Mach number M∞ = 21 also showed that two-dimensional waves prevailed both
in the free stream and in the shock layer on the flat plate. However, the base flow
behind the plate trailing edge, which is of small but finite thickness and of finite
spanwise size, seems to be three-dimensional. Nevertheless, the upstream influence
of the three-dimensional base flow is limited only by an immediate vicinity of the
trailing edge and does not affect the boundary layer over most of the plate surface.
Numerical simulations in the present work were not aimed at investigating these
minor three-dimensional effects; therefore, two-dimensional Navier–Stokes equations
were solved. They were written in the conservative form as

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
=

M∞

ReL

(
∂F v

∂x
+

∂Gv

∂y

)
. (1)

Here t is the time; x and y are the coordinates along and across the plate; Q is the
vector of conservative variables; F and G are the vectors of inviscid fluxes; and F v

and Gv are the vectors of viscous fluxes:
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The system is closed by the equation of state of a perfect gas,

p = ρT/γ. (3)

In (1)–(3), u and v are the x and y components of the velocity vector; p is the pressure;
ρ is the density; T is the temperature; e = p/(γ −1)+ρ(u2+v2)/2 is the total energy per
unit volume; γ is the ratio of specific heats; μ is the dynamic coefficient of viscosity;
and κ =μ/((γ − 1)Pr) is the coefficient of thermal conductivity. The viscosity is
calculated with the Sutherland formula μ = T 1.5(1 + TS/T∞)/(T + TS/T∞), where T∞
is the free-stream temperature and TS is the Sutherland constant equal to 106.67 K
for nitrogen. The Reynolds number ReL is based on the free-stream parameters and
the plate length L, and the Prandtl number is Pr =0.72.

For (2) and (3) to be written in dimensionless form, the density, temperature and
viscosity are normalized to their free-stream values; the other scaling quantities are
the velocity of sound c∞ for velocity, ρ∞c2

∞ for pressure and the plate length L for
geometric sizes.

The numerical method used to solve (1) was described in detail in Kudryavtsev et al.
(2006). The convective terms of the Navier–Stokes equations are approximated by
the monotonicity-preserving, fifth-order (MP5) scheme proposed by Suresh & Huynh
(1997). The fluxes through the faces between the cells are calculated by means of
fourth-order piecewise-polynomial reconstruction; as a result, the scheme ensures fifth-
order approximation on smooth solutions. Near the discontinuities, the reconstructed
values of the fluxes are limited for the solution to preserve its monotonicity. This
scheme has a built-in analyser distinguishing solution discontinuities from smooth
extrema, which allows avoiding the decrease in accuracy on smooth extrema to the
first order.

Flux reconstruction is performed in local characteristic variables; before
reconstruction, the characteristic fluxes are split into positive and negative parts.
The global Lax–Friedrichs splitting (Shu & Osher 1989) is used for this purpose in
the present work. The diffusive terms in (1) are approximated with the fourth order of
accuracy; both central and skewed differences are used to preserve a rather compact
stencil (five cells in each direction) (Kudryavtsev & Khotyanovsky 2005). Integration
in time is performed by the third-order total-variation-diminishing Runge–Kutta
scheme (Shu & Osher 1988).

The code based on this numerical scheme was intensively tested and verified by
comparing numerical results with well-known analytical solutions of compressible
Navier–Stokes equations. In particular, the problems of the interior structure of the
shock wave, the laminar supersonic boundary layer on the flat plate (at high Reynolds
numbers, when the leading-edge shock wave is very weak, the boundary layer is thin,
and the solution of the Navier–Stokes equations can be compared favourably with
the self-similar solution of the boundary-layer equations) and viscous attenuation
of a small-amplitude acoustic wave propagating in a uniform supersonic stream
were solved. The two last test cases are directly connected with the problem under
consideration.

When simulating processes in the hypersonic viscous shock layer, the following
computational domain and the boundary conditions are taken. A schematic of the
computational domain is shown in figure 9. The domain is a rectangle with sizes
LxLy . The largest part EF of its lower side AD coincides with the plate surface,
so that the streamwise size of the computational domain is Lx = 1.05L, where L
is the plate length. The left (inflow) boundary AB is located at a distance of eight
computational cells upstream from the leading edge of the plate (point E). The height
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Figure 9. Schematic of the computational domain.

of the computational domain Ly = 0.24L is chosen under the condition that the bow
shock wave SW emanating from the leading edge does not interact with the upper
boundary BC. Concerning the flow characteristic scales, the boundary-layer thickness
δ in the cross-section x = 0.8 is 0.11L, whereas the distance between the plate surface
and the shock wave is 0.15L. The definition of δ here is based on the streamwise
velocity equal to 0.99 of that directly behind the shock wave, and the cross-section
x = 0.8 is chosen because the boundary layer there is not yet subjected to the upstream
influence of the wake flow behind the plate trailing edge. The right (outflow) boundary
CD is separated from the trailing edge of the plate (point F) by the distance 0.042L,
which is sufficient for the flow in the exit section to be completely supersonic.

A uniform computational grid consists of Nx =1050 cells in the streamwise direction
and Ny = 240 cells in the transverse direction. All numerical data presented below are
obtained for M∞ = 21, ReL = 1.44 × 105 and a fixed surface temperature Tw = 300 K.

4. Steady flow
The steady basic flow is first calculated with a uniform hypersonic flow being

imposed on the left (AB) and upper (BC) boundaries. The solution on the right
boundary CD is extrapolated from inside the computational domain. The boundary
conditions on the plate (EF) take into account the velocity slip and the temperature
jump:

u =
2 − auαu

αu

λ
∂u

∂y
, T − Tw =

2 − aeαe

2αe

γ

γ − 1

λ

Pr

∂T

∂y
for y = 0, 0 < x < L. (4)

Here λ=
√

π/2μ/
√

pρ is the mean free path of molecules; αu and αe are the
momentum and energy accommodation coefficients assumed to be equal to unity in the
computations; and au = 0.858 and ae = 0.827 are numerical coefficients whose values
are obtained from an approximate solution of the Boltzmann equation in the Knudsen
layer (Kogan 1969). The boundary conditions on the flat plate are supplemented with
the non-permeability condition v = 0 for the vertical component of velocity and by
the condition ∂p/∂y =0 for pressure. The conditions of symmetry are set on the
remaining parts of the lower boundary (AE and DF). Numerical implementation of
the boundary conditions involves ghost cells outside the computational domain.

The computed mean flow was compared with experimental data. Figure 10(a–c)
shows the computed (solid curves) and experimental (symbols) profiles of the mean
density in the cross-sections x =0.23, 0.31 and 0.65. The computed and experimental
distributions of the Mach number in the same cross-sections are plotted in figure 10(d–
f ). The dashed curves in the figure show the profiles obtained by solving the Navier–
Stokes equations with the no-slip boundary conditions.
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Figure 10. Density and Mach numbers profiles in the cross-sections x = (a, d) 0.23,
(b, e) 0.31 and (c, f ) 0.65 for steady flow: the dashed curves show the numerical data
with the no-slip boundary conditions; the solid curves are the numerical data with the velocity
slip and the temperature jump on the plate surface; the symbols are the experimental data.

The rarefaction effects are seen to be quite significant in this problem. The
streamwise velocity on the plate surface is approximately 17 % of its free-stream
value at x = 0.1 and 7 % near the trailing edge. It is evident from figure 10 that the
allowance for the slip velocity and temperature jump on the plate surface noticeably
improves the agreement with the experimental results. We can conclude that the
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Figure 11. Mean velocity (denoted by 1), temperature (denoted by 2) and pressure profiles in
the cross-sections x = (a, d) 0.23, (b, e) 0.31 and (c, f ) 0.65 for steady flow (numerical data
with the velocity slip and the temperature jump on the plate surface).

overall agreement between the computed and measured results is good. A certain
difference in data for the mean density is caused by the substantial widening of the
probing electron beam because of electron–molecule collisions in high-density regions
and by smoothing of the real density profile.

The steady flow velocity, temperature and pressure profiles in several cross-sections
are shown in figure 11. It can be seen that the temperature in the shock layer does
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not exceed 400 K, and the pressure is substantially non-constant in the inviscid region
of the shock layer.

5. Disturbances
In simulating the interaction of the viscous shock layer with natural and artificial
disturbances, they are introduced by imposing appropriate time-dependent boundary
conditions.

The natural disturbances observed in the experiments consist of acoustic waves
propagating in the external flow. In numerical simulations of these disturbances, the
variables on the left boundary of the computational domain (AD in figure 9) are set
as a superposition of the steady basic flow and a plane monochromatic acoustic wave
in the form ⎛

⎜⎜⎝
u′

v′

p′

ρ ′

⎞
⎟⎟⎠ = A

⎛
⎜⎜⎝

± cos θ

∓ sin θ

1

1

⎞
⎟⎟⎠ exp[i(kxx + kyy − ωt)]. (5)

Here θ is the angle of propagation of the external acoustic wave; A is its amplitude;
and kx = k cos θ and ky = −k sin θ are the components of the wave vector related to
the angular frequency ω =2πf by the dispersion relation k = ω/(M∞ cos θ ± 1). Here
and in (5), the upper (lower) sign refers to the fast (slow) acoustic wave.

The boundary conditions on the plate surface are the same as those used to find the
steady-state solution, except for the assumption of zero perturbations of temperature
on the surface T ′|y = 0 = 0 (by virtue of a significant thermal inertia of the plate).
Thus, the wall temperature is always equal to the temperature obtained in solving the
steady-state problem. After introduction of disturbances, the Navier–Stokes equations
are integrated until the unsteady solution reaches a periodic regime.

The artificial perturbations introduced in the experiments by the oblique-cut
cylindrical whistle are perturbations similar to periodic blowing/suction organized
locally, near the leading edge of the plate. In solving the problem numerically, they
are simulated by setting the boundary condition for the transverse mass flow on a
certain part of the plate surface:

ρv|y=0 = A sin

(
π

x − x1

x2 − x1

)
sinωt. (6)

Here, again, A is the amplitude and x1 = 0.065 and x2 = 0.08 are the boundaries of the
region in which the perturbation was introduced. Except for that, the computation is
performed in the same manner as the computation for acoustic perturbations.

6. Excitation of the shock layer by external acoustic disturbances
6.1. Spatial distribution of disturbances

Figure 12 shows the mean density flow field (figure 11a) and the instantaneous fields
of density fluctuations for the case of excitation of the viscous shock layer by slow
(figure 12b) and fast (figure 12c) acoustic perturbations of the external flow. The
solid and dashed curves in figure 12(b, c) correspond to the positive and negative
density fluctuations, respectively. It is seen from the figure that the main wave
processes induced by external acoustic perturbations in the hypersonic shock layer
occur behind the shock wave and on the edge of the hypersonic boundary layer. As



98 A. A. Maslov and others

0.2

(a)

y
0.1

0 0.5

3.52
2.64
0.88
0.44

1.0 0 1 2
ρ

3 4

0 0.5 1.0 0 0.25
�ρ′2�

0.50

0 0.5
x

1.0 0 0.25
�ρ′2�

0.50

0.2

(b)

y
0.1

0.2

(c)

(d)

(e)

(f)

y
0.1

Figure 12. (a) Density isolines in steady flow, (b, c) isolines of instantaneous density
fluctuations and r.m.s. fluctuations of density in the cross-section x = (d, e, f ) 0.8 with
θ = 0◦, A = 0.028 and f = 38.4 kHz: (b, e) fluctuations induced by a slow acoustic wave;
(c, f ) fluctuations induced by a fast acoustic wave; the dashed curve shows the position of the
boundary-layer edge.

above, the boundary-layer edge is defined as the point at which the streamwise velocity
is 1 % smaller than the streamwise velocity immediately behind the shock wave. It
is worth noting that this point coincides with the location of maximum gradient
of mean density. The fluctuating characteristics of the flow in the hypersonic shock
layer display a typical form with two maxima; the greater of them is located on the
shock wave, and the position of the second maximum coincides with the boundary-
layer edge (figure 12). This is seen in the figures of both the instantaneous isolines
of density fluctuations (figure 12b, c) and the distributions of the root-mean-square
(r.m.s.) fluctuations (figure 12e, f ).

In the case of the external fast acoustic mode (figure 12c), the disturbances directly
behind the shock wave leave behind the disturbances on the boundary-layer edge. This
is not observed in the case of external slow acoustic waves (figure 12b). The reason
is that the velocity of propagation of disturbances directly behind the shock wave is
equal to the external flow velocity plus or minus the velocity of sound, depending
on the mode of external acoustic disturbances. At the same time, the velocity of
disturbances on the boundary-layer edge corresponds to the flow velocity there. In
the case of the slow mode of external disturbances, the velocity on the boundary-
layer edge is close to the external flow velocity minus the velocity of sound, while
the velocity on the boundary-layer edge in the case of the fast mode is substantially
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Figure 13. Instantaneous patterns of (a) pressure fluctuations in the shock layer, (b) entropy
fluctuations and (c) vorticity fluctuations induced by a slow acoustic wave with θ = 0◦, A = 0.028
and f = 38.4 kHz and r.m.s. profiles of (d ) pressure, (e) entropy and (f ) vorticity fluctuations
in the cross-section x = 0.8.

smaller than the external flow velocity plus the velocity of sound, which leads to the
observed phase delay.

Figure 13(a–c) shows the fields of pressure, entropy and vorticity fluctuations,
respectively. A periodic structure of the fields is clearly visible. Vortices observed in
figure 13(c) near the surface decay further downstream. Two maxima of fluctuations,
on the shock wave and on the boundary-layer edge, are again observed in figure 13(b,
c, e, f ), while they are absent in the field of pressure fluctuations (figure 13a, d ).
Moreover, it is seen that the pressure fluctuations decay when moving from the shock
wave inward into the shock layer.

Figure 14(a, b) shows a cut of the field of density fluctuations and the vector field
of velocity fluctuations, respectively. It is seen that the shock layer contains vortices
rotating in the opposite directions, which occupy the region between the shock wave
and the boundary-layer edge. It is also seen that the light and dark regions of the
field of density fluctuations correspond to the regions with velocity vectors directed
towards and outward from the plate, respectively.

Thus, as a result of interaction of external acoustic waves with the hypersonic shock
layer, vortex and entropy pulsations are generated, which propagate in the domain
between the shock wave and the boundary-layer edge. At the same time, pressure
fluctuations decay. It should be noted that such prevailing of the entropy–vortex mode
is not typical for the boundary layer at moderate hypersonic Mach numbers, where
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Figure 15. Critical angles for (a) slow and (b) fast incident acoustic waves at M∞ = 21 versus
the angle of shock wave inclination. Curves 1 and 2 bound the domain where no transmitted
acoustic wave is generated.

the acoustic mode of instability is mainly developed (Egorov, Sudakov & Fedorov
2006a, b).

6.2. Comparison with the linear theory of interaction of small perturbations
with a shock wave

It is known that all disturbances in a compressible fluid can be classified into acoustic,
vortex and entropy modes. Acoustic disturbances propagate with the velocity of
sound with respect to the flow, while vortex and entropy disturbances move along
the streamlines together with the flow. Vortex and entropy waves can be considered
as one mode of disturbances because they have the same dispersion relation, i.e. the
entropy–vortex mode.

Figure 15 shows the regions of existence of perturbations of different modes
in the shock layer, which were calculated in accordance with Kontorovich (1959)
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and McKenzie & Westphal (1968). In accordance with the linear theory, there
are the so-called critical angles bounding the range of propagation angles, where
incident acoustic waves do not pass through the shock wave. In this range, the
acoustic disturbances generated behind the shock wave exponentially decay further
downstream. As was shown by measurements and computations, the shock wave
inclination angle ϕ in the case considered changed from 16◦ near the leading edge
of the plate to 7.5◦ at the end of the plate. Then, according to the linear theory of
interaction of perturbations with the shock wave, the slow and fast external acoustic
waves generate no transmitted acoustic waves in the domains of propagation angles
between curve 1 and curve 2 (figure 15). Thus, only the entropy–vortex disturbances
are generated inside the range of θ bounded by curves 1 and 2.

The analytical theory of interaction (Kontorovich 1959; McKenzie & Westphal
1968) was developed for inviscid flows. For comparisons with the theory, an inviscid
hypersonic flow with M∞ = 21 past a flat plate at a 10◦ angle of attack was computed
by the method described above. This angle of attack was chosen to obtain the shock
wave inclination angle ϕ close to that in the problem of a viscous flow past a flat
plate at a zero angle of attack (ϕ = 12.65◦ in the cross-section x = 0.2).

The acoustic wave transmission coefficients, i.e. the ratios of the amplitudes of
pressure fluctuations in the transmitted acoustic waves p′ to the amplitudes of free-
stream pressure fluctuations p′

∞, were calculated. Figure 16(a, b) shows a comparison
between the numerical transmission coefficients (symbols) and the data obtained on
the basis of the linear theory of interaction (solid curves) for slow and fast acoustic
waves, respectively, in the range of the propagation angles θ greater than the critical
value (curve 2 in figure 15). The range of smaller angles is not considered because
the transmitted acoustic waves decay exponentially with the distance from the shock
wave in this case. The transmission coefficient of acoustic waves in the inviscid case is
determined from the amplitude of pressure fluctuations on the surface with allowance
for single reflection of disturbances from the plate surface and the shock wave.

It is seen from figure 16 that the acoustic waves are amplified manifold when
passing through the shock wave. Thus, the amplification rate equals 5 in the case of
incidence of a slow acoustic wave and is more than 13 in the case of incidence of
a fast acoustic wave. For angles θ close to the critical angle of incidence, the theory
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predicts a drastic increase in the amplification rate of acoustic waves (as M∞ → ∞,
the amplification rate is proportional to M2

∞ at the normal incidence and to M3
∞ in

the case of incidence at the critical angle). Such a drastic increase was not observed
in the present computations. This agrees with the data of Zang, Hussaini & Bushnell
(1984) and Manesh et al. (1995), where similar results were obtained in numerical
simulations of interaction of acoustic disturbances with the normal shock wave.

Figure 16(a) also shows the amplification rates for the viscous case (triangles).
They were computed as the ratio of the amplitude of pressure fluctuations directly
behind the shock wave to the amplitude of free-stream pressure fluctuations at a
distance x corresponding to the shock wave inclination angle ϕ = 12.65◦. This angle
is close to the value of ϕ in the inviscid case. It seems that the observed differences
of transformation coefficients for the viscous and inviscid cases are connected with
generation, in the viscous case, of additional disturbances by a shear flow.

6.3. Mechanism of formation of the field of density fluctuations

The computed distributions of r.m.s. density fluctuations across the viscous shock
layer are in good agreement with the measured results, which have a typical form
with two maxima; the greater of them is located on the shock wave, and the position
of the second maximum coincides with the boundary-layer edge (figure 17a).

The relation between the pulsations of density and those of normal velocity is
demonstrated in § 6.1. This suggests that density fluctuations are caused by mean flow
field oscillations normal to the plate surface in the shock layer (see figure 14b), which
are induced by vortices. Figure 17(b) shows the computed distributions of the mean
density gradient (curve 1 is plotted only up to the shock wave because of the large
gradient of mean density of the shock wave) and r.m.s. density fluctuations (curve 2)
in the cross-section x = 0.63. The maxima of density fluctuations are seen to coincide
with the maxima of the mean density gradient. Figure 17(b) also shows the distribution
of density fluctuations (curve 3) obtained for small oscillations of the computed mean
density profile along the normal to the surface. The amplitude of normal velocity
fluctuations was assumed to be proportional to the mean normal velocity. Some
difference in the location of the maxima of curves 2 and 3 (figure 17b) is caused by
the difference between the actual (curve 5 in figure 17c) and the model distribution of
normal velocity fluctuations. Nevertheless, curves 2 and 3 in figure 17(b) are in good
agreement, which confirms the initial assumption that the field of density fluctuations
is formed by normal-to-plate-surface oscillations of the mean density field in the shock
layer, which are induced by vortices arising behind the shock wave under the action
of external flow perturbations. This simple physical model also offers an explanation
for the 180◦ phase shift between the fluctuations on the boundary-layer edge and the
shock wave and for the large difference in their amplitude.

In addition, figure 17(d ) shows the profiles of the mean streamwise velocity and
its r.m.s. fluctuations in the same cross-section. The maxima of longitudinal velocity
fluctuations do not coincide with those of density fluctuations. This confirms the
above-described model of formation of the field of density fluctuations.

The solid curves in figure 18 show the behaviour of the computed amplitudes of
density fluctuations immediately behind the shock wave for different frequencies of
the slow (figure 18a) and fast (figure 18b) modes of external acoustic perturbations.
The symbols in figure 16(a) are the measured amplitudes of density fluctuations
at the corresponding frequencies. Good agreement between the computed and the
experimental amplitude is observed within the accuracy of measurement. It is also
seen in the figures that the distributions of the amplitudes of density fluctuations
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Figure 17. (a) Comparison of the computed profile of r.m.s. fluctuations of density (solid
curve) with experimental data (�). (b) Computed distributions of the mean density gradient
(denoted by 1), density fluctuations (denoted by 2) and density fluctuations predicted by
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acoustic wave θ = 0◦, A =0.028, f = 38.4 kHz, cross-section x = 0.63.
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Figure 18. Amplitudes of density fluctuations directly behind the shock wave for (a) slow
and (b) fast acoustic waves with θ = 0◦ and A =0.028 versus the streamwise coordinate for
different frequencies: 1 and 5 denote 19.2 kHz; 2 and 6 denote 38.4 kHz; 3 denotes 50 kHz;
and 4 denotes 80 kHz.
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Figure 19. Amplitude of density fluctuations (a) directly behind the shock wave and (b)
on the boundary-layer edge versus the streamwise coordinate for a fast acoustic wave with
A =0.028, f = 50 kHz and θ = −10◦, 0◦, 10◦, 20◦ and 45◦ (denoted respectively by 1–5).
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Figure 20. Amplitude of density fluctuations (a) directly behind the shock wave and (b)
on the boundary-layer edge versus the streamwise coordinate for a slow acoustic wave with
A =0.028, f = 38.4 kHz and θ = −10◦, 0◦, 10◦, 20◦ and 45◦(denoted respectively by 1–5).

directly behind the shock wave as functions of the streamwise coordinate become
non-monotonic with increasing frequency. At low frequencies (curves 1 and 2), only
some part of the period of variations, which looks as a monotonic dependence on x, is
recorded within the plate length. It seems that the distribution of density fluctuations
is not monotonic at any frequency.

6.4. Influence of the propagation angle

Computations for different angles of propagation of external acoustic perturbations
θ = −10◦, 0◦, 10◦, 20◦ and 45◦ (figure 19a, b) with a frequency f = 50 kHz also
revealed the presence of periodic variations of the amplitude of density fluctuations
immediately behind the shock wave along the plate; the wavelength of these variations
decreased with increasing frequency and angle of propagation of external acoustic
perturbations. Variations of the amplitude of density fluctuations were also observed
on the inner maximum (on the boundary-layer edge).

Similar dependencies of the amplitude of density fluctuations on the propagation
angle are plotted in figure 20 for slow external acoustic waves. The dependencies
obtained immediately behind the shock wave are non-monotonic.
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Figure 21. Instantaneous density fluctuations induced by periodic perturbations from the
plate surface at a frequency f =40kHz: (a) numerical simulation, A = 0.028; (b) experiment;
the solid and dashed curves show the locations of the shock wave and the boundary-layer
edge, respectively.

It was initially assumed that these variations were caused by interference of external
acoustic perturbations and vortex perturbations behind the shock wave, which had
different phase velocities. The calculations for the external vortex mode, however,
revealed the presence of amplitude variations with similar characteristics, though
the phase velocities of external and internal perturbations in this case were almost
identical. Hence, the characteristics of these variations are independent of or weakly
depend on the mode of external perturbations.

An analysis of disturbances arising in the shock layer showed that both acoustic
and vortex disturbances were generated behind the shock wave under the action of
external perturbations of all modes. The field of density fluctuations in the shock
layer was formed under the action of vortex and acoustic waves arising in the shock
layer and propagating with different streamwise phase velocities. The mechanism of
formation of the field of density fluctuations because of vortex disturbances was
described above. Acoustic waves generated within the shock layer (which can be
decaying or non-decaying, depending on the angle θ and the region of existence in
figure 15) are directly responsible for density fluctuations in the shock layer. This
simultaneous influence of two types of waves is manifested by variations of the
amplitude of density fluctuations and can be interpreted as density wave interference
accompanied by ‘beats’ of the amplitude of fluctuations. In the case of decaying
acoustic waves behind the shock wave, variations of the amplitude of fluctuations
are observed only behind the shock wave (figure 20a), where the maximum intensity
of decaying acoustic waves is still high enough. In the case of non-decaying acoustic
waves (at large angles of propagation of the external acoustic wave), variations of
the amplitude of fluctuations are observed both directly behind the shock wave
(figure 19a) and on the boundary-layer edge (figure 19b).

7. Excitation of the shock layer by disturbances introduced from the plate
Figure 21 shows the instantaneous density fluctuations in the shock layer on a flat
plate, generated by a blowing/suction source at a frequency f =40 kHz, which were
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Figure 22. Profiles of density fluctuations across the shock layer, which are generated by a
blowing/suction source (f = 20 kHz and A =0.028), in the cross-section x = 0.42: curve 1 is
the numerical data for an external slow acoustic wave (for comparison); the symbols and the
solid curve, curve 2, show the experimental and computed results.

obtained (a) in DNSs and (b) in experiments with a whistle. It is seen that the field of
intense fluctuations occupies the region between the shock wave and the boundary-
layer edge, which corresponds to the maximum gradient of the mean density, as in
the case of external acoustic perturbations. The computed data (figure 21a) agree
with the experimental data (figure 21b). Again, there are two maxima of intensity of
density fluctuations; one of them (higher peak) is located on the shock wave, and
the second maximum (lower peak) is located on the boundary-layer edge; the phases
of the fluctuations on the shock wave and on the boundary-layer edge are shifted
by 180◦. Thus, the fields of disturbances excited by periodic blowing/suction in the
shock layer are similar to the fields of fluctuations excited by external acoustic waves.

It is also seen in figure 21 that the disturbances immediately behind the shock wave
propagate slower than those on the boundary-layer edge, which results in some phase
delay. A possible explanation is that the disturbances behind the shock wave are
generated exclusively from below, and the observed delay is caused by the increase in
distance between the boundary-layer edge and the shock wave.

The computed (solid curve 2) and measured (symbols) distributions of density
fluctuations across the shock layer in the cross-section x = 0.42 are compared in
figure 22 for the case of excitation by blowing/suction. A comparison of these data
with the distribution of density fluctuations in the shock layer, which are generated by
external acoustic waves (curve 1), shows that these profiles are also similar. This fact
points to a common nature of formation of the field of density fluctuations through
a mechanism that involves the action of vortex perturbations on the mean density
field, which was described above.

Thus, the main feature of the mechanism of formation of the field of density
fluctuations in the shock layer excited by both external acoustic perturbations and
periodic blowing/suction is domination of entropy–vortex disturbances inside the
shock layer.

The numerical and experimental density fluctuations in the shock layer for the case
of periodic blowing/suction are compared in figure 23. The figure shows the computed
streamwise distributions of the amplitude of density fluctuations immediately behind
the shock wave (figure 23a) and on the boundary-layer edge (figure 23b) for the
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Figure 23. Comparison of experimental (symbols) and computed amplitudes of density
fluctuations (a) directly behind the shock wave and (b) on the boundary-layer edge for
frequencies of 20 kHz (1, 3, solid curve) and 40 kHz (2, 4, dashed curve) for blowing/suction
perturbations with A = 0.028.

fundamental frequency f = 20 kHz and its harmonic f = 40 kHz. The symbols in the
figures are the corresponding experimental data. Good agreement of experimental and
computational results over a part of the plate (at 0.4 <x < 0.8) is seen. Most probably,
some difference between experimental and computed data over the initial part of the
plate (at x < 0.4) is caused by different locations of the source of disturbances: in
experiments, the disturbances are introduced by a whistle directly from the leading
edge of the plate, while the perturbations in numerical simulations occur at a small
distance from the leading edge. At x > 0.8, the influence of the plate trailing edge
becomes substantial in experiments. A possible reason is flow three-dimensionality
in the wake behind a flat plate of finite thickness and width, which was used in
experiments.

A tendency of all density fluctuations to decay in the direction along the plate for
the case with localized receptivity should be noted. This tendency can be caused by
the fact that the influence of the perturbation source on the shock layer is gradually
attenuated with distance from the source, while external perturbations affect the shock
layer over its entire length.

The dependence of the magnitude of density fluctuations in the shock layer on
the amplitude A of introduced perturbations was studied in the current work. Such
information is important for controlling the intensity of fluctuations in the shock
layer with the use of blowing/suction. Figure 24 shows the computed amplitude of
density fluctuations as a function of the streamwise coordinate x (a) on the shock
wave and (b) on the boundary-layer edge for three values of A, namely A=0.004,
0.04 and 0.4. A certain difference in the dependencies along the streamwise coordinate
is seen in the figures. The most pronounced distortion of the distributions is observed
in the region in which the blowing/suction source is placed. Nevertheless, the level of
fluctuations in the shock layer increases almost linearly with increasing amplitude A
of perturbations being introduced.

Figure 25 shows the amplitude of density fluctuations (a) on the shock wave and
(b) on the boundary-layer edge as a function of the streamwise coordinate x at a
frequency f = 38.4 kHz for three positions of the blowing/suction source. The distance
from the source centre to the leading edge of the flat plate was x =0.0725, 0.15 and
0.22, and the amplitude of perturbations was A= 0.04. Obviously, the amplitude of
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Figure 24. Amplitude of density fluctuations (a) directly behind the shock wave and (b) on
the boundary-layer boundary versus the streamwise coordinate; A = 0.004 (denoted by 1), 0.04
(denoted by 2) and 0.4 (denoted by 3); f = 38.4 kHz.

0

0.025

0.050

1

2

3

0

0.002

0.004

0.006

0.008

1

2

3

ρ′

(a) (b)

0.20 0.4 0.6 0.8 1.0
x

0.20 0.4 0.6 0.8 1.0
x

Figure 25. Amplitude of density fluctuations (a) directly behind the shock wave and (b)
on the boundary-layer edge versus the streamwise coordinate for different positions of the
blowing/suction source: x =0.0725 (denoted by 1), 0.15 (denoted by 2) and 0.22 (denoted
by 3).

fluctuations in the shock layer decreases with increasing distance from the leading
edge. It can be explained by the increase in the distance from the blowing/suction
source to the high-density region behind the shock wave.

8. Active control of disturbances
It was demonstrated above that the entropy–vortex mode of disturbances dominates

in the shock layer in the flow past a flat plate with a Mach number M∞ = 21
excited by both external acoustic perturbations and periodic blowing/suction. As a
consequence, the spatial structures of disturbances under the action from outside and
inside the shock layer are fairly similar (see figures 12 and 21). Figure 26 shows the
streamwise phase velocity of disturbances Cx on the boundary-layer edge, normalized
to the flow velocity behind the shock wave, as a function of the distance along the
plate. The computations (solid and dashed curves in figure 26) and measurements
(symbols) show that the streamwise phase velocities of disturbances generated both
by external acoustic waves (triangles and circles) and by the source on the model
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Figure 26. Streamwise phase velocity of disturbances on the boundary-layer edge versus the
distance along the plate: measurements for fast and slow external acoustic waves (Δ and
�); measurements for perturbations generated by the oblique-cut whistle (+); the solid and
dashed curves show numerical results for fast and slow acoustic waves; the dash-dotted curves
show the phase velocities of vortex and slow acoustic perturbations calculated using the linear
theory of hydrodynamic stability.

surface (crosses) coincide. In addition, the phase velocity of vortex disturbances in
the shock layer is close to the phase velocity of vortex disturbances (upper dash-
dotted curve in figure 26) obtained within the framework of the locally parallel linear
theory of stability (Gaponov & Maslov 1980) with allowance for the local shock
wave inclination angle ϕ and local Mach number Me. The lower dash-dotted curve
in figure 26 shows the phase velocity of slow acoustic perturbations behind the shock
wave.

Under these conditions, it is possible to use active methods of disturbance control,
which work well in subsonic boundary layers (Biringen 1984; Nosenchuck 1988;
Pack & Joslin 1998; Rist & Gmelin 2006). Oscillations generated by external
perturbations can be suppressed by introducing artificial perturbations if an
appropriate phase and amplitude of blowing/suction are selected.

8.1. Numerical simulations

In the present activities, the possibility of such control was demonstrated numerically
and experimentally. Figure 27(a) shows the computed field of instantaneous density
fluctuations in the shock layer on a flat plate excited by slow acoustic waves
propagating at a zero angle to the external flow centreline. Hereinafter, for the
sake of illustration, the field of isolines is supplemented with the r.m.s. (averaged
over the period) dependence of density fluctuations on the normal coordinate y in
the cross-section x = 0.8 (figure 27e–h). These dependencies have a typical shape
with two maxima; the higher maximum is located on the shock wave proper and
is related to shock wave oscillations, and the location of the second maximum
coincides with the boundary-layer edge. Figure 27(b) shows the field of instantaneous
density fluctuations in the shock layer on a flat plate, which were generated by
blowing/suction. Qualitative similarity of the fields of fluctuations and quantitative
coincidence of the amplitude of density fluctuations on the boundary-layer edge are
observed. Figure 27(c) shows the field of instantaneous density fluctuations in the
shock layer on a flat plate under a joint action of external and internal sources of
perturbations, when these sources operate exactly in the opposite phases. It is well
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Figure 27. (a–d ) Instantaneous density fluctuations in the shock layer and (e–h) r.m.s. density
fluctuations in the cross-section x = 0.8 for θ = 0◦ and f = 38.4 kHz: (a, e) slow acoustic wave
A =0.001; (b, f ) blowing/suction from the plate surface A = 0.06; (c, g) anti-phase action;
(d, h) in-phase action.

seen that the density fluctuations on the boundary-layer edge decrease substantially,
though the oscillations of the shock wave proper remain almost unchanged.

For the sake of illustration, figure 27(d ) shows the field of instantaneous density
fluctuations in the case of in-phase operation of the sources of perturbations. As was
expected, the amplitude of fluctuations on the boundary-layer edge is doubled.

The maximum efficiency of suppression is achieved by selection of the
blowing/suction amplitude and the time shift with respect to external acoustic
disturbances. The values of the blowing/suction amplitude and the time shift depend
on the type of external disturbances; therefore the transformation coefficients are
different for slow and fast acoustic waves.

As is seen in figure 28, the phase control is equally efficient for both fast and slow
external acoustic waves.
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Figure 28. (a–d ) Instantaneous density fluctuations in the shock layer and (e–h) r.m.s. density
fluctuations in the cross-section x = 0.8 for θ = 0◦ and f = 38.4 kHz: (a, e) fast acoustic wave
A = 0.0017; (b, f ) blowing/suction from the plate surface A = 0.0694; (c, g) anti-phase action;
(d, h) in-phase action.

8.2. Experimental investigation

The results of numerical simulations were verified by experiments. The idea of the
experiment is illustrated in figure 29. Periodic acoustic waves (1 in figure 29) are
generated in a hypersonic flow. These waves interact with the shock layer on the plate
(2 in figure 29) and generate fluctuations in the layer. The oblique-cut gas-dynamic
whistle (3 in figure 29) located under the plate near the plate leading edge also
introduces periodic pressure perturbations into the shock layer on the flat plate. If
the frequency of external flow disturbances equals the frequency of perturbations
introduced by the whistle, interference suppression (amplification) of fluctuations in
the shock layer on the flat plate can occur under a certain relationship between the
disturbance phases. For better understanding, the suppression of density fluctuations
in the shock layer in figure 29 is shown at the time instant when the disturbances
have passed half of the plate length after the whistle activation.
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Figure 29. Arrangement of the experiment: 1, acoustic waves in the external flow; 2, flat plate;
3, oblique-cut whistle; 4, settling chamber; 5, amplifier; 6, narrow-band filter; 7, frequency
divider; 8, generator of pulses for electric discharge initiation; 9, power unit for the discharge.

Acoustic perturbations (1 in figure 29) in the hypersonic free stream are generated
by a powerful electric discharge in the settling chamber (4 in figure 29); a pulse
synchronized with pressure oscillations in the resonator of the whistle (3 in figure 29)
initiates the discharge. Thus, the phases of external and internal controlled periodic
perturbations are correlated. The electric circuit used in the experiment is also shown
schematically in figure 29. The circuit includes an amplifier of the signal of the
transducer of pressure oscillations in the whistle (denoted by 5), a narrow-band filter
for identifying the fundamental frequency of fluctuations (denoted by 6), a frequency
divider (denoted by 7), a generator of pulses (denoted by 8) initiating the discharge
with a possibility of a time shift with respect to the incoming signal and a power
unit for the spark discharge (denoted by 9) with a controlled time of discharge
initiation. In the experiment, the frequency of the transducer of pressure fluctuations
in the whistle was divided by 5. The use of the frequency divider (7 in figure 29)
made it possible to increase the power of an individual discharge pulse and to use
the higher harmonics of pressure fluctuations in the settling chamber (f4 = 12.5 kHz,
f9 = 25 kHz and f14 = 37.5 kHz) to form acoustic perturbations in the flow. The
frequencies of these harmonics coincide with the fundamental frequency and also
with the first and second harmonics of oscillations in the whistle. The amplitudes of
density fluctuations generated in the shock layer by external acoustic waves and by
the whistle at frequencies of 25 and 37.5 kHz were almost coincident. It was at these
frequencies that the maximum effect of amplification was expected.

For three frequencies, f = (a) 12.5, (b) 25 and (c) 37.5 kHz, figure 30 shows the
experimental dependencies of the amplitude of density fluctuations on the boundary-
layer edge on the flat plate 〈ρ ′2〉/〈ρ ′2〉max in the cross-section x = 0.63 on the time
shift Δτ between the external flow oscillations and oscillations generated by the
oblique-cut whistle, which is normalized to the period of oscillations, T. Here 〈ρ ′2〉max

is the level of density fluctuations on the boundary-layer edge for the in-phase effect
of the external acoustic wave and periodic disturbances of the blowing/suction type.
The dependencies in figure 30 are plotted for different ranges of the quantity Δτ/T .
The reason is the normalization of the time shift to the period of oscillations at the
corresponding frequencies.

The plots display periodic variations of the amplitude of density fluctuations. The
depth of these variations depends on the ratio of the amplitudes of external acoustic
and internal blowing/suction perturbations. At the fundamental frequency of the



Wave processes in a viscous shock layer and control of fluctuations 113

0.8

0.9

1.0

0

0.8

21

Δτ/T

0

0.4

0

0.8

1.2

�
ρ
′2 �

/�
ρ
′2 �

m
ax

(a)

(b)

(c)

Figure 30. Normalized amplitudes of r.m.s. density fluctuations on the boundary-layer edge
versus the delay between the whistle signal and discharge initiation for three frequencies:
(a) 12.5, (b) 25 and (c) 37.5 kHz. The symbols are the measured data; the solid curve is
the approximation by the dependence for interference of two sinusoidal waves of identical
frequencies and amplitudes; the crosses are the numerical data.

whistle, the amplitude of perturbations introduced by the whistle is substantially
greater than the amplitude of disturbances generated by external acoustic waves;
therefore, no significant suppression of fluctuations occurs here. At the frequencies
of the first and second harmonics, the ratio of the amplitudes of external and
internal perturbations allows the fluctuations in the shock layer to be almost
completely suppressed. Some displacement of the locations of minima and maxima
with increasing frequency is caused by the phase shift of the discharge-controlling
signal in the electronic circuit in figure 29.

For comparison, figure 30(c) shows the corresponding numerical data (crosses) in
the shock layer under the action of fast acoustic waves propagating at a zero angle
to the external flow centreline with a frequency f =37.5 kHz and the dependence of
amplitude in accordance with the law of interference of two harmonic waves of the
same frequency and amplitude (solid curve).

The initial amplitudes of the fast external acoustic mode and periodic
blowing/suction perturbations were chosen to fit the suppression problem: 0.0017
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and 0.0694, respectively. The computed values are seen to be in good agreement with
the measured data.

The measurements performed in several cross-sections in the range x =0.23–0.85
show that the depth of modulation of the amplitude of oscillations and the value
of Δτ/T that ensures the minimum (maximum) of density fluctuations remain
unchanged. This fact indicates that suppression (amplification) of fluctuations occurs
simultaneously over the entire plate length.

Variations of the amplitude of pulsations with the variation of Δτ/T are also
observed immediately behind the shock wave; however, their permanent suppression
or amplification in this region cannot be obtained because of a substantial difference
in phase velocities of disturbances generated by external fast acoustic waves and the
oblique-cut whistle (see figures 12c and 21a). Such suppression of fluctuations behind
the shock wave is impossible to obtain with external acoustic disturbances of the slow
mode because the phase velocity of fluctuations generated by these disturbances is
larger than that of disturbances from the oblique-cut whistle.

9. Conclusions
A novel numerical and experimental investigation of generation and development of
disturbances in a hypersonic shock layer on a flat plate at a zero angle of attack excited
by external acoustic waves of the slow and fast modes, as well as by blowing/suction
from a local source on the plate, is performed.

Experimental investigations are conducted in a hypersonic nitrogen-driven wind
tunnel at a flow Mach number of 21 and Reynolds number of 1.44 × 105. The mean
density and Mach number distributions, as well as the characteristics of the field
of density fluctuations in the free stream and in the shock layer, are measured by
probing and electron-beam fluorescence techniques. In particular, the phase velocities
and the propagation angles of free-stream disturbances, the r.m.s. and instantaneous
amplitude distributions of fluctuations and their phase velocities in the shock layer are
measured. The method of artificial wave packets is used in wind-tunnel experiments.
Controlled periodic disturbances in the free stream are generated by an electric
discharge or are introduced into the shock layer from the plate leading edge by an
oblique-cut gas-dynamic whistle. Some part of the results is obtained with natural
disturbances of the wind-tunnel flow.

Measurements of the wave characteristics of artificial and natural free-stream
disturbances reveal their two-dimensional character, and the modal composition
of these disturbances is determined. It is also shown that the oblique-cut whistle
generates two-dimensional disturbances of the entropy–vortex mode in the shock
layer.

DNSs of generation and development of disturbances in the shock layer during its
interaction with fast and slow acoustic waves or with pulsations from a local source
of blowing/suction on the plate surface are performed by solving the Navier–Stokes
equations. A numerical parametric study is carried out, which includes the following:
variations of the intensity and the angle of incidence of external disturbances on to the
shock wave; the intensity of the blowing/suction source and its location on the plate;
and the frequency of disturbances. New results on the transformation coefficients of
external disturbances across the shock waves and the structure of fluctuations in the
shock layer are obtained. Numerical results are in good agreement with wind-tunnel
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measurements and predictions of the linear theory of interaction of disturbances with
a shock wave.

It is demonstrated for the first time that external acoustic waves and pulsations
forced by an oblique-cut whistle or a local source of blowing/suction on the plate
surface predominantly generate disturbances of the entropy–vortex mode in the
shock layer. Interacting with the mean flow, they form a specific flow field of density
fluctuations. In particular, there are two maxima of density fluctuations: a narrow
intense peak immediately behind the shock wave and a wider and less intense peak
on the boundary-layer edge. Such a spatial distribution of fluctuations is typical for
all types of shock-layer excitation being tested.

The phase velocity of disturbances on the boundary-layer edge coincides with the
local gas velocity. The velocity of disturbance propagation behind the shock wave
depends on the type of excitation. If the shock layer is excited by acoustic waves of
the fast mode, then the disturbances immediately behind the shock wave propagate
faster than those on the boundary-layer edge. In case of excitation by acoustic waves
of the slow mode, the phase velocities of disturbances immediately behind the shock
wave and on the boundary-layer edge are approximately identical. If the shock layer
is excited by blowing/suction from the surface or by an oblique-cut whistle, the phase
velocity of disturbances immediately behind the shock wave is lower than that on the
boundary-layer edge.

A numerical parametric study of the influence of the propagation angle of external
acoustic waves shows the existence of substantial streamwise variations of the
amplitude of disturbances directly behind the shock wave and on the boundary-
layer edge. The size of these variations depends on the propagation angle of external
disturbances; their streamwise length scale is determined by both the propagation
angle and the frequency of external disturbances. A possible explanation of the
existence of amplitude variations is the interference of entropy–vortex disturbances in
the shock layer with acoustic waves generated behind the shock wave. The properties
of the streamwise variations depend on whether the acoustic waves generated behind
the shock wave are decaying or propagating. The characteristics of decaying acoustic
waves are described properly by the linear theory of interaction of perturbations with
a shock wave.

The similarity of the fields of fluctuations generated in the shock layer by free-
stream disturbances and by periodic blowing/suction, as well as the coincidence of the
phase velocities of disturbances on the boundary-layer edge, allows the interference
scheme to be used for controlling the intensity of fluctuations in the shock layer.
This scheme enables one to control the intensity of fluctuations by means of artificial
blowing/suction disturbances with a specified amplitude and phase. The interference
scheme of flow control for flows with strong viscous–inviscid interaction is successfully
implemented for the first time in both computations and experiments. Acoustic
waves introduced into the incoming flow generate entropy–vortex disturbances in
the shock layer. The latter are suppressed or amplified by disturbances generated by
periodic blowing/suction (in numerical simulations) or by an oblique-cut whistle (in
experiments). Almost complete extinction of fluctuations on the boundary-layer edge
and appreciable suppression of fluctuations in the entire shock layer are obtained.

This work was supported by the Russian Foundation for Basic Research (projects
09-08-00557, 09-01-00524 and 09-08-00679) and by ADTP RNP 2.1.1/3963. The
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